BAB I
PRINSIP DASAR STABILITAS
Kapal harus memiliki stabilitas yang baik sebagai jaminan keselamatan dari bahaya tenggelam akibat kapal terbalik. Istilah stabilitas yang dimaksud disini adalah kemampuan kapal untuk kembali pada posisi tegak atau kesetimbangan semula setelah mengalami kemiringan akibat pengaruh gaya-gaya dari luar seperti ombak maupun gaya-gaya dari dalam kapal itu sendiri.
1.1. PERIHAL KESEIMBANGAN
Suatu benda berada pada keadaan seimbang atau setimbang dalam arti diam jika jumlah gaya-gaya dan momen-momen yang bekerja padanya adalah nol. Perihal kesetimbangan gaya dan momen ini diilustrasikan seperti pada gambar 1 di bawah ini.
Gambar 1. Keseimbangan Gaya dan Momen
Pada gambar 1. tersebut diperlihatkan suatu benda yang diletakkan di atas suatu tumpuan bebas. Gaya F1 dan F2 menekan benda tersebut secara horisontal dengan arah yang berlawanan,masing –masing dari sisi kiri dan kanan. Jika besar gaya F1 dan F2 sama dan berada pada satu garis kerja, maka benda tetap diam atau setimbang seperti pada gambar 1a, karena jumlah gaya dan momen yang bekerja padanya adalah nol. Sebaliknya, benda akan bergerak atau tidak setimbang uka besar gaya F1 dan F2 tidak sama.
F1 = F2 ∑F = 0 benda diam atau setimbang
y1 = y2 ∑M = 0
F1 > F2 ∑F > 0 benda bergerak atau tidak seimbang
y1 = y2 ∑M > 0
Meskipun besar gaya F1 dan F2 adalah sama, tetapi posisinya berbeda atau dengan kata lain tidak pada satu garis kerja seperti ditunjukkan pada gambar 1b, maka benda akan bergerak atau tidak dalam keadaan setimbang. Benda akan tetap diam jika besar gaya F1 dan F2 tidak sama hingga jumlah momennya nol.
F1 = F2 ∑F = 0 benda bergerak atau tidak seimbang
y1 > y2 ∑M > 0
F1 < F2 ∑F > 0 benda diam atau setimbang
y1 > y2 ∑M = 0
Perihal kesetimbangan benda ada tiga macam seperti ditunjukkan pada gambar 2, yakni keseimbangan stabil (stable equilibrium), keseimbangan labil (unstable equilibrium) dan keseimbangan sembarang atau netral (indifferent or neutral equilibrium).
Gambar 2. Keseimbangan Benda
Jika suatu benda mengalami kemiringan atau perubahan posisi karena mendapat gangguan gaya dari luar , dan selanjutnya dapat kembali ke posisinya semula setelah gaya tersebut lepas, itulah yang dimaksud dengan keseimbangan stabil sebagaimana yang diperlihatkan pada gambar 2a. Untuk benda dengan keseimbangan labil seperti pada gambar 2b, bila mengalami perubahan posisi atau kemiringan sedikit dari kedudukan semula, benda tersebut akan terus bertambah miring dan tidak dapt kembali pada kedudukannya semula. Suatu benda dengan keseimbangan sembarang seperti yang ditunjukkan pada gambar 2c, jika mengalami perubahan dari kedudukannya, benda tersebut akan tetap pada kedudukannya yang baru bagaimanapun berubah kedudukannaya.
1.2. KESEIMBANGAN KAPAL
Kapal yang terapung dengan posisi tegak pada air tenang akan diam atau dalam keadaan setimbang jika tidak terjadi kesetidakseimbangan gaya-gaya dan momen- momen yang bekerja padanya. Ada dua gaya yang mempengaruhi keseimbangan kapal, yaitu gaya berat kapal dan gaya tekan air. Bila kapal diam, itu berarti garis kerja kedua gaya tersebut berada pada garis vertikal yang sama. Agar kapal memiliki keseimbangan yang mantap, maka titik berat atau titik tangkap dari gaya berat dan gaya tekan harus berada pada posisi yang tepat.
a. Berat dan Titik Berat
Berat kapal adalah jumlah dari seluruh komponen berat di kapal. Secara garis besar , komponen – komponen berat kapal dikelompokkan menjadi dua yaitu berat kapal kosong dan berat muatan. Berat kapal kosong meliputi berat konstruksi lambung dan bangunan atas, permesinan serta perlengkapan kapal yang dikenali dengan sebutan LWT (LightweightTonnage). Sedangkan yang dimaksud muatan, diantaranya adalah muatan bersih (payload), bahan bakar, minyak pelumas, air tawar, penumpang, awak kapal, perbekalan dan barang bawaan, dan sebagainya yang dikenali dengan sebutan bobot mati atau DWT (Dead Weight Tonnage).
W = LWT + DWT ( ton ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 1 )
Titik berat kapal adalah resulan titik tangkap gaya berat dari seluruh komponen berat kapal. Pada arah memanjang kapal, posisi titik berat kapal adalah jaraknya terhadap garis tegak buritan atau After Perpendicular (AP) yang biasa disebut dengan istilah LCG (Longitudinal Center of Gravity). Sedangkan pada arah melintang kapal, posisi titik berat kapal adalah jaraknya terhadap garis dasar (base line) atau terhadap lunas. Posisi vertikal titik berat kapal ini dikenal dengan sebutan VCG (Vertical Center of Gravity) atau dengan simbol KG. Perihal posisi titik berat ini diilustrasikan sebagaimana pada gambar 3 di bawah ini.
Gambar 3. Posisi titik berat dan titik tekan
Estimasi berat kapal serta letak titik beratnya dapat dihitung dengan menggunakan rumus – rumus empirik. Perhitungan secara komponen atau dengan kata lain menghitung berat dan letak titik berat seluruh komponen – komponen berat kapal secara satu demi satu. Letak titik berat kapal merupakan hasil bagi antara jumlah momen statis dari seluruh komponen berat dibagi dengan jumlah berat dari seluruh berat komponen.
∑ ml.w
LCG = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 2 )
∑ w
∑ mv.w
KG = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 3 )
∑ w
.
Setelah kapal terapung di air, berat dan letak titik beratnya dapat ditentukan secara lebih akurat melalui percobaan lambungan (inclining experiment).
b. Displeisment dan titik tekan
Dalam teori kapal, yang dimaksud dengan displeismen (displacement) atau pergeseran ialah sejumlah air yang digeser oleh kapal yang terapung bebas, hal mana, beratnya adalah sama dengan berat kapal itu sendiri. Besarnya displeismen kapal dapat dihitung dengan rumus berikut ini.
D = L B T Cb ɤ c . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 4 )
Berdasarkan prinsip Archimedes bahwa sebuah benda yang tercelup di air akan mendapat gaya tekan air sebesar air yang dipindahkan, itu berarti kapal mendapat gaya tekan air yang besarnya sama dengan displeisman kapal. Titik tangkap gaya – gaya tekan air itulah yang dimaksud dengan titik tekan.
Seperti halnya posisi titik berat, posisi titik tekan juga ditinjau baik pada arah memanjang maupun vertikal sebagaimana ditunjukkan pada gambar 3. Letak titik tekan pada arah memanjang dikenal dengan sebutan LCB (Longitudinal Center of Bouyancy) yaitu jarak titik tekan terhadap garis tegak buritan. Sedangkan letak titik tekan pada arah vertikal kapal yang dikenal bengan sebutan VCB (Vertical Center of Bouyancy) adalah jarak titik tekan terhadap garis dasar atau terhadap garis lunas yang juga biasa dituliskan dengan simbol KB.
c. Interaksi Gaya Barat dan Gaya Tekan
Kapal didesain untuk dapat terapung dan setimbang dalam posisi tegak. Meskipun mengalami kemiringan akibat suatu gaya selain gaya berat dan gaya tekannya, sesudahnya dapat kembali pada posisi tegak semula. Perihal posisi dan keseimbangan kapal ini, tergantung dari interaksi antara gaya berat dan gaya tekannya.
Pada arah melintang, kapal akan berada pada posisi tegak jika titik berat dan titik tekan berada pada bidang tengah vertikal memanjang kapal (longitudinal center plane). Posisi tegak memanjang kapal akan terjadi jika titik berat dan titik tekan berada pada bidang vertikal melintang kapal ( athwart center plane ) yang sama, atau dngan kata lain LCG dan LCB sama besar. Uraian berikut ini hanya membahas keseimbangan melintang kapal.
Seperti ditunjukkan pada gambar 4a, kapal berada pada posisi tegak. Pada keadaan ini, titik berat dan titik tekan berada pada bidang vertikal tengah memanjang kapal atau bekerja pada satu garis kerja yang sama. Garis kerja gaya berat maupun gaya tekan selalu vertikal tegak lurus dengan bidang horisontal permukaan air, tetapi arahnya berlawanan. Arah garis kerja gaya berat ke bawah searah dengan gravitasi, sedangkan arah garis kerja gaya tekan adalah ke atas. Karena jarak antara garis kerja kedua gaya tersebut adalah nol serta besar gayanya sama, maka antara kedua gaya tersebut saling meniadakan. Pada keadaan ini, kapal diam karena jumlah gaya-gaya dan jumlah momen- momen yabg bekerja padanya adalah nol.
Gambar 4. Posisi Kapal Serta Interaksi Antara Gaya Barat dengan Gaya Tekan
Jika ada gaya luar yang bekerja dan menjadikan kapal miring dengan sudut oleng ɵ seperti pada gambar 4b, maka bentuk badan kapal yang berada di dalam air pada keadaan oleng ini berbeda pada waktu kapal tegak. Dengan demikian, titik tekan kapal akan bergeser dari posisinya semula di titik B ke titik BƟ. Titik tekan pada keadaan miring yakni BƟ ini tidak lagi berada pada bidang vertikal tengah memanjang kapal. Sementara itu, titik berat kapal tetappada posisi semula. Pada keadaan oleng ini, garis kerja gaya berat terpisah dangan garis kerja gaya tekan. Jarak tegak lurus antara garis kerja kedua gaya tersebut sebesar h, itulah yang disebut dengan lengan stabilitas (righting arm).
Dengan terpisahnya garis kerja gaya berat dan gaya tekan dengan arah yang berlawanan, pada yang mana kedua gaya tersebut besarnya sama, maka terjadi kopel yang besarnya merupakan hasil kali antara salah satu dari kedua gaya tersebut yang dalam hal ini adalah displeismen dengan jarak garis kerjanya.
C = D x h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 5 )
Momen kopel yang dimaksud di atas bisa merupakan momen pengembali (righting moments). Jika lengannya positip seperti pada gambar 5a, dan juga bisa merupakan omen oleng (heeling moments). Jika lengannya negatif seperti pada gambar 5c. Momen pengembali terjadi pada suatu sudut inklinasi, pada yang mana gaya berat dan gaya tekan menggerakkan kapal untuk kembali pada posisi tegak semula. Momen oleng terjadi pada sudut inklinasi, pada yang mana gaya berat dan gaya tekan menggerakkan semakin jauh dari posisi tegak semula. Disamping itu, jika pada suatu sudut inklinasi tertentu dimana lengan momen kopel adalah nol seperti pada gambar 5b, maka antara momen gaya berat dengan momen gaya tekan akan saling meniadakan sehingga kapal tetap pada posisi inklinasi tersebut.
d. Posisi Metasentra dan Keseimbangan kapal
Metasentra adalah titik potong antara garis vertikal yang melalui titik tekan kapal pada keadaan miring dengan garis vertikal yang melalui titik tekan kapal ketika sudut inklinasi dalam limit mendekati nol. Titik potong tersebut berada pada garis kerja gaya berat dan gaya tekan kapal sewaktu dalam posisi tegak.
Dalam hubungan dengan keseimbangan kapal, posisi metasentra ditinjau terhadap letak titik berat kapal. Untuk sudut inklinasi dalam limit mendekati nol, posisi metasentra terhadap titik berat kapal dapat dihitung dengan pendekatan rumus – rumus berikut ini.
Ix
MB = . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 6 )
V
MK = KB + MB . . . . . . . . . . . . . . . . . . . . . . . . . . . . .( 7 )
MG = MK - KB . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 8 )
Ada tiga kemungkinan posisi metasentra M terhadap titik berat kapal G. Ketiga kemungkinan yang dimaksud sebagaimana ditunjukkan pada gambar 5, yaitu M berada di atas G, M dan G berada pada satu titik yang sama, dan M berada di bawah G. Posisi metasentra terhadap titik berat kapal tersebut merupakan indikator keseimbangan kapal, apakah stabil, netral atau labil.
Ketika kapal miring dan M di atas G (MG positif) seperti pada gambar 5a, maka kopel yang terjadi merupakan momen pengembali ( righting moment ). Dengan demikian, kapal berada dalam kesimbangan stabil ( stable equilibrium ).
Gambar 5. Posisi Metasentra dan Keseimbangan Kapal
Pada suatu kemiringan dimana M tepat pada titik G (MG = 0 ) seperti pada gambar 5b, maka besarnya kopel adalah nol. Pada keadaan seperti ini, kapal berada dalam keseimbangan sembarang atau netral ( indifferent or neutral equilibrium ).
Jika pada suatu kemiringan, dan sementara itu titik M berada di bawah titik G
(MG negatif ) maka kopel yang terjadi merupakan momen oleng ( heeling moment). Dalam keadaan seperti ini, itu berarti kapal berada dalam keseimbangan labil ( unstable equilibrium ).
1.3. INKLINASI DAN TITIK TEKAN
Sebagaimana telah dikemukakan terdahulu serta diilustrasikan pada gambar 4a, bahwa bila terjadi kemiringan atau keolengan, maka titik tekan kapal akan bergesar dari posisi semula. Pada posisi tegak, titik tekan kapal B berada pada bidang vertikal tengah memanjang kapal. Posisi titik tekan kapal pada waktu oleng BƟ berada di luar bidang vertikal tengah memanjang kapal tersebut, hal mana, arah dan besarnya pergeseran titik tekan tersebut tergantung pada arah dan besarnya sudut oleng.
Titik tekan akan bergeser karena terjadinya perubahan bentuk lambung kapal di bawah permukaan air menyusul terjadinya keolengan, sebagaimana dicontohkan pada gambar 6 di bawah ini. Pada keadaan tegak, kapal terbenam dengan sarat sebesar T pada garis air WL, volume carena sebesar V dan titik tekan pada B.
Setelah kapal mengalami kemiringan dengan sudut oleng sebesar Ɵ, kapal terbenam di air dengan garis air oleng W’L’. Dengan demikian, sarat pada lambung kiri dan lambung kanan menjadi berbeda, masing – masing sebesar T – t dan T + t.
Gambar 6. Pergesaran Titik Tekan Kapal Akibat Keolengan
Pada keadaan oleng,volume pada lambung kiri berkurang sebesar volume baji v1,dan volume pada lambung kanan bertambah sebesar volume baji vr. Karena vl dan vr besarnya sama yang selanjutnya di sebut v, itu berarti dapat diasumsikan bahwa terjadi pergeseran volume baji sebesar v. Koordinat pergeseran titik tekan baji dari b ke bƟ atau jarak horisontal dan vertikal antara b dengan bƟ dapat dihitung dengan persamaan berikut.
2 B
btbƟ = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 9 )
3
B tan Ɵ
bvbƟ = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 10 )
3
Berdasarkan pada prinsip pergeseran dan kesetimbangan, dapat dinyatakan bahwa momen statis volume kapal adalah sama dengan momen statis pergeseran volume baji. Selanjutnya, pergeseran titik tekan kapal dari B ke BƟ dalam jarak horisontal dan vertikal diantara keduanya dapat dihitung dengan persamaan berikut.
V BtBƟ = v btbƟ . . . . . . . . . . . . . . . . . . . . . . . . . . ( 11 )
2 v B
BtBƟ = . . . . . . . . . . . . . . . . . . . . . . . . . . ( 12 )
3 V
V BvBƟ = v bvbƟ . . . . . . . . . . . . . . . . . . . . . . . . . . ( 13 )
V B tan Ɵ
BvBƟ = . . . . . . . . . . . . . . . . . . . . . . . . . . ( 14 )
3 V
Garis kerja gaya tekan kapal pada saat oleng akan melalui titik tekan BƟ yang posisinya terhadap titik tekan kapal pada saat tegak ( B ) dapat dihitung dengan persamaan ( 12 ) dan ( 14 ) di atas. Dengan asumsi bahwa titik peninjauan atau titik putar kapal pada B, maka besarnya momen yang ditimbulkan oleh gaya tekan adalah hasil kali gaya tekan yang dalam hal ini adalah displeismen dengan jarak tegak lurus antara garis kerja gaya tekan terhadap titik tekan B.
MD = D BB’
. . . . . . . . . . . . . . . . . . . . . . . . ( 15 )
MD = D MB sin Ɵ
Momen gaya tekan sebagaimana pada persamaan ( 15 ) di atas merupakan momen statis gaya tekan. Karena titik tekan BƟ tidak pada posisi tegak lurus terhadap titik B, maka secara potensial gaya tekan air memiliki energi tambahan berupa kerja dinamis yang besarnya adalah hasil kali antara gaya tekan atau displeismen dengan panjang jalan atau lengan dinamis.
WD = D B’BƟ
. . . . . . . . . . . . . . . . . . . . . . . . ( 16 )
WD = D MB ( 1 – cos Ɵ )
Persamaan ( 16 ) di atas adalah dengan asumsi bahwa jari – jari metasentra pada sudut oleng limit mendekati nol ( MB ) adalah sama dengan jari – jari metasentra pada sudut oleng sebesar Ɵ ( MBƟ ).
Rentang sudut oleng, pada yang mana MB = MBƟ, itulah yang dimaksud dengan sudut oleng awal atau yang dikenal dengan sebutan finite angles yakni antara 0° sampai dengan 6°. Stablitas kapal dalam rentang sudut oleng awal ini dikenal dengan istilah stabilitas awal ( initial stability ).
Pada sudut oleng yang lebih besar ( Ɵ > 6° ), jari – jari metasentra MBƟ tidak lagi sama dengan MB. Oleh karena itu, ada perbedaan antara stabilitas pada sudut oleng yang besar dengan stabilitas awal. Dengan asumsi kapal berbentuk kotak, perbedaan tersebut kiranya dapat diyakini dengan membandingkan antara persamaan ( 17 ) dengan ( 18 ) berikut ini.
B²
MB = . . . . . . . . . . . . . . . . . . . . . . . . ( 17 )
12 T
B²
WD = . . . . . . . . . . . . . . . . . . . . . . . . ( 18 )
12 T cos³Ɵ
Minggu, 05 September 2010
Langganan:
Posting Komentar (Atom)
Tidak ada komentar:
Posting Komentar